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EXECUTIVE SUMMARY 
 
This project studied the locations of highway fatalities in Oklahoma with a goal of 
identifying the physical characteristics of the state’s highways (i.e., grade, geometry, 
and design) that contributed to higher rates of fatality crashes. While agencies such as 
the Oklahoma Department of Transportation (ODOT) can promote driver education and 
awareness initiatives that encourage safer driving and hence reduce fatalities, ODOT 
has far more control over highway safety via design, construction, and maintenance 
activities. This project used statistical analysis to uncover relationships between fatality 
crashes and road characteristics along predominantly rural (including tribal) segments 
of the state’s roadways. This information can help transportation engineers evaluate 
current construction practice and seek ways to address design issues that are shown to 
contribute significantly to serious crashes. This was accomplished with fatality data from 
1998 to 2011 for Oklahoma from the national Fatality Analysis Reporting System 
(FARS) database, Oklahoma road inventory data from ODOT, and other related data 
sources such as the International Roughness Index (IRI). Data management and 
integration was accomplished using Geographic Information Systems (GIS), though 
statistical analysis was conducted with the statistical package SPSS. 

Crash analysis has historically focused on high-crash locations, a technique also known 
as “black spot” analysis. Because fatality and serious injury accidents are so rare and 
spread out geographically, black spot analysis usually includes crashes of all severities 
recorded by the state or local agency responsible for such data. However, this approach 
biases the results towards less severe crashes at urban intersections simply due to the 
large amounts of traffic that pass through those locations, and safety treatments arising 
from black spot analysis have not been very effective at reducing fatal and serious injury 
crashes system-wide. Notably, run-off-road (ROR) crashes comprise over half of all 
fatal crashes in the United States and typically occur in rural areas, at high-speed, on 
two-lane highways, and involve a single vehicle. Black spot analysis rarely identifies 
clusters of these types of accidents or offers direction on remediation. 

Thus, research is needed that isolates specific design elements rather than specific 
locations (or intersections) that contribute to elevated serious accident rates, helping 
transportation engineers to identify corrective measures for existing highways and to 
develop new designs for future (re)construction. This approach is called “systems” 
analysis because both the analysis and the resulting safety enhancements are done 
system-wide. There is strong empirical evidence that relatively low-cost system-wide 
treatments, such as shoulder rumble strips, are very beneficial in reducing ROR crashes 
and hence fatality accidents. The results of this research should lead to the identification 
and implementation of similar methods that can be broadly beneficial in the state. 
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The nature of the crash data used here, especially the use of discrete fatality counts 
along highway segments, necessitated more advanced methods than simple linear 
regression. Shortcomings of linear regression have been frequently documented in the 
literature and more advanced models like Poisson regression and negative binomial (or 
Poisson-gamma) regression are advocated, among other methods. Both methods were 
employed in this study, though ultimately end results proved very similar and Poisson 
regression was deemed adequate to the task. 

Three different modeling frameworks were used. First, thirteen counties in northeastern 
Oklahoma were analyzed and results between Poisson and negative binomial 
regression were compared. Surface roughness, thickness, and (pavement) type, 
median width and type, and elevation were significantly related to fatality crashes, while 
curvature was only moderately related and vertical grade was insignificant. 

A state-wide Poisson model was then developed which found that median width and 
type, terrain type, surface type and thickness, grade, and outside shoulder width were 
all significant predictors of fatality accidents. Vertical grade was the most significant 
variable in the state model, with uphill grades contributing to significantly more fatal 
crashes while flat roads modestly reduce the risk, relative to the rate that downhill 
grades cause fatal crashes. Terrain type was also very significant, both flat and rolling 
terrain categories having higher contributions to fatality crash rates than baseline levels 
in residential areas. Surface type and surface thickness were both very significant, but 
these were harder to interpret in a meaningful way. Outside shoulder width significantly 
negatively correlates with fatalities, as wider shoulders mean more room for drivers to 
recover or at least shed speed. Median width was also significant with the expected 
negative sign as wider medians result in fewer fatalities. Surprisingly, median type was 
only moderately significant, though most other median types did contribute to higher 
fatal crash rates compared to cable barriers as might be expected. 

Finally, models were constructed individually for each of ODOT’s eight field divisions. 
Perhaps due to fewer numbers of observations, no more than two independent 
variables were significant in any one field division and a few field divisions had no 
significant predictors. However, field divisions 1 (east central), 5 (southwest), and 8 
(northeast) had extremely significant overall models while field division 3 (central) 
achieved moderate significance. In contrast, field divisions 2 (southeast), 4 (north 
central), and 7 (south central) had very weak models and field division 6 (northwest, 
including Panhandle) achieved virtually no goodness of fit or significance. These 
differential results can help transportation personnel modify possible system-wide 
improvements at the field division level, as the great breadth of Oklahoma’s terrain, 
elevations, and traffic levels means few true system-wide treatments will probably be as 
effective as rumble strips or cable barriers have been. 
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1.0 INTRODUCTION 
 
1.1 Problem Statement 

This project examined Oklahoma highway fatalities because the Oklahoma Department 
of Transportation (ODOT) seeks system-wide treatments that can further reduce 
highway accidents, injuries, and fatalities. Relatively cheap and effective treatments, like 
shoulder rumble strips, are highly desirable because they help reduce accident rates 
system-wide without waiting for hot spots to emerge from accident data. Though this 
research was neither funded nor supervised by ODOT, the origins of this topic filtered 
down from the state agency through the FY11.1 OkTC Funding Competition as a “pull” 
topic under the Traffic subheading. As such, specific information about ODOT’s interest 
in analyzing data from the Fatality Analysis Reporting System (FARS) was obtained 
through personal conversations with several ODOT personnel in the summer of 2011. 

“Hot spot” (or black spot) analysis is the most common form of accident analysis in the 
literature and has been useful in highlighting high crash incidence locations. Due to data 
limitations, however, all crashes are typically included in such research, which then 
usually isolates high-frequency, low-severity crashes at urban intersections. While an 
important area of research that can help reduce property damage, this approach 
overlooks infrequent, spatially dispersed, but more serious highway crashes that more 
often have fatalities. Hot spot analysis has therefore been less useful in generating 
system-wide improvements that could reduce severe crashes. This is particularly critical 
in rural areas, where run-off-road (ROR) crashes account for more than 50% of all 
automotive fatalities. Rural ROR crashes often involve high speeds, a single vehicle, 
and occur on two-lane highways [1]. However, cross-over, head-on accidents are also a 
risk on two-lane highways since median cable barriers being installed on four-lane 
divided highways are not feasible on these roads. 

Additional research is therefore needed that uncovers specific design elements, rather 
than specific locations, that contribute to elevated accident rates, helping transportation 
engineers identify corrective measures for existing highways and develop new designs 
for future (re)construction. This approach is called “systems” analysis because the 
safety enhancements are done system-wide, rather than targeting the unique traits of 
specific locations (such as intersections) identified as hot spots. There is evidence that 
low-cost system-wide treatments, such as shoulder rumble strips, are very beneficial in 
reducing ROR crashes and fatality crashes, and similar treatments are sought to further 
reduce crash rates. 
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1.2 Background to Problem 

While a precise value cannot be attached to human life or the life-long impacts of traffic 
injuries, one study [2] estimated that the total costs of auto crashes, including the lost 
quality of life, averaged 2.5% of gross national product and was over 5% in some 
countries. A federal study in 2000 calculated the overall economic cost of motor vehicle 
crashes at $230.6 billion in the United States, including future work loss costs (i.e., lost 
wages), travel delays, medical care, property damage, legal costs, and emergency 
services costs, among others [3]. That study also cited past research that sought to 
quantify a multitude of costs associated with automobile accidents. Another study 
calculated that expected injury costs averaged over $2.00 per hour travelled by vehicle 
[4]. 

Worldwide, the United Nations has declared 2011-2020 as the “Global Decade of Action 
for Road Safety”, citing annual road-related deaths of 1.3 million globally and economic 
consequences of accidents at between 1% and 3% of gross national product, or $500 
billion [5]. Thus, reducing these costs is a global priority no matter what benchmark 
goals are set. 

Due to the high costs of accidents, attention and funding focused on U.S. highway 
safety has increased notably over the past two decades. In 1996, numerous 
organizations involved with highway safety met to develop a comprehensive national 
Strategic Highway Safety Plan (SHSP). These organizations included the Association of 
American State Highway and Transportation Officials (AASHTO), the Federal Highway 
Administration (FHWA), the National Highway Traffic Safety Administration (NHTSA), 
and the Transportation Research Board (TRB). This meeting identified twenty-two 
specific focus areas grouped under six major headings: drivers, special users, vehicles, 
highways, emergency medical services (EMS), and management. These various areas 
of concern have been instrumental in guiding research and safety efforts as well as 
focusing attention on funding needs to address each area [6]. 

Subsequently, in 2005 the President signed into law the “Safe, Accountable, Flexible, 
Efficient Transportation Equity Act: A Legacy for Users” (SAFETEA-LU), guaranteeing 
nearly a quarter of a trillion dollars for highways, highway safety, and public 
transportation. A mandate of SAFETEA-LU was that states develop individual SHSPs to 
guide investment decisions towards achieving significant reductions in highway fatalities 
and serious injuries. Oklahoma consequently developed a plan identifying its own state-
specific goals, based on problems identified on all public roads, which was completed in 
September 2007. Among the goals of the state SHSP is a 20% reduction of both the 
2004 fatality and serious injury rates by 2015 [7]. 
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1.3 Scope of Study 

Highway fatalities in most developed countries have been decreasing since reaching a 
peak in the early 1970s, but total fatalities tend to trend up and down over time, 
degrading the quality of statistical trend analyses that attempt to predict highway 
fatalities [8]. The United States exemplifies this trend, though there has been strong 
downward trend since 2005 [9] and a preliminary tally of 32,310 deaths in 2011 
represents a decrease of over 10,000 fatalities compared to 2006. Despite this 
progress, a 2003 goal to reduce the U.S. highway fatality rate to below 1.00 per 
hundred million vehicle miles traveled (HMVMT) by the year 2008 was not achieved, as 
the rate was still 1.09 fatalities per HMVMT in 2011 [10]. 

Also, while there were over 500 fewer fatalities nationwide in 2011 than 2010 and eight 
NHTSA regions experienced declines, Region 9 (Arizona, California, and Hawaii) saw a 
3.3% increase while Region 6 (Louisiana, Mississippi, New Mexico, Oklahoma, and 
Texas) had no change between 2010 and 2011 [10]. Thus, Oklahoma is in a region that 
lags the majority of the country with respect to crash fatality reductions and so analysis 
in this project is confined to fatality crashes recorded in the FARS database that 
occurred in the state between 1998 and 2011. In Oklahoma, annual reductions have 
been achieved recently; both fatalities and serious injuries in crashes have decreased 
by 1% and the number of crash fatalities per HMVMT dropped by 0.01. Even so, there 
were still 668 fatalities, over 36,500 injuries, and a 1.40 fatality rate per HMVMT in 2010 
[11], the latter figure being notably higher than the national rate of 1.09 in 2011 (see 
Figure 1). 

Rural areas are disproportionately represented in the FARS database. Nationally in 
2007, 57% of traffic fatalities occurred on rural roads [12] even though only 23% of the 
U.S. population was rural. The fatality rate for rural roads was 2.21 per HMVMT 
compared to 0.88 in urban areas [13]. Crashes in rural areas typically involve higher 
speeds on highways that often lack paved shoulders, curbs, or other safety features 
[12]. Also, 60% of all drivers who died en route to hospitals in 2007 had crashed in rural 
areas [13]; longer wait times for the arrival of first responders and longer ambulance 
rides to local or regional hospitals are likely part of the reason, but more severe crashes 
probably also affect this statistic. Of note, Oklahoma’s territory is largely rural but about 
two-thirds of its population is urban. FARS data for 2007 reveal that Oklahoma was one 
of twenty states where rural highways accounted for 70% or more of all highway deaths. 
That same year 69% of all fatal crashes took place on state highways [14]. Thus, both 
nationally and state-wide important reductions have occurred but there will always be 
room for improvement, and many goals remain unmet. 
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Figure 1. Fatality Rates per HMVMT by County with ODOT Field Divisions  
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1.4 Study Objectives 

This project can provide state, county, and tribal transportation planners with 
information about the common characteristics of highways that contribute to fatal 
crashes. Once identified, said officials can make better cost-benefit decisions and 
identify low-cost solutions that can be applied to specific segments of highways or 
system-wide. The ultimate goal is to identify strategies for deploying relatively low-cost 
safety measures across the entire highway system. These measures can be better 
programmed if policy and decision-makers know the likely locations of severe or fatal 
highway crashes. All this will aid in cost-benefit analysis of competing safety treatments 
with a goal of improving highway safety in the most efficient manner. 

As outlined in the project proposal, three deliverables were listed. First, an integrated 
geo-database with the state’s highways linked to fatality crash data (obtained from 
FARS) and roadway characteristics (obtained from ODOT and others) would be 
constructed. This was a necessary, and very lengthy, component of the project given 
the incredibly diverse sources and formats of the needed data. The steps for this 
process are outlined in Section 3 later in this report. Ultimately, however, this database 
is not in a format that is publicly useful and is simply the platform within which all data 
were spatially cross-referenced for the purposes of analysis. Ultimately, statistical 
analysis had to be performed in a computer statistics package (SPSS) and so the 
pertinent variables from the geo-database were exported in a spreadsheet-type format 
for importation into the statistics package. Thus, there is no tangible manifestation of 
this deliverable, but the databases are available should interested parties request them. 
They are in ESRI’s ArcGIS 10.0 format. 

Second, a web page providing materials and information gathered and generated for 
this study is intended. This deliverable is in progress, though ultimately the nature of the 
project, especially the analysis phase, went in different directions than originally 
envisioned and very few maps were generated, for example. 

Third and finally, the most important deliverable is this comprehensive final report that 
contains an extensive literature review of past work (Section 2), a description of the data 
and methods used in this project (Section 3), an analysis of the causes of highway 
fatality crashes on rural roadways in Oklahoma (Section 4), and a summary evaluation 
of the results (Section 5). 

It is important to mention what is beyond the scope of this project. This project neither 
proposed nor included a cost analysis component. The project also does not involve 
technology transfer; though the methods and procedures are replicable by others with 
the appropriate expertise they are not novel in the sense of being newly developed nor 
are they patentable. As a result, these sections are absent from this report. 
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This research project also does not include information about the drivers themselves 
and the behaviors that can lead to crashes and fatalities [15,16]. Abundant research 
exists on driver behavior (e.g., drunk, distracted, or fatigued driving); the reader is 
directed to a large body of literature as exemplified by recent research on cell phone 
use in particular, but a sample of this work is provided for context especially in terms of 
the role of mobile devices as driver distractors. McCartt, Hellinga, and Bratiman [17] 
reviewed 125 studies on cell phones and driving, finding that cell phone use in autos 
has been increasing over time but that laws banning such activity have had little effect 
and were unevenly enforced, while more effective alternatives were unknown at that 
time and remain elusive still. 

McCartt, Hellinga, Strouse, and Farmer [18] analyzed the effects of cell phone laws on 
driver usage patterns, finding that states with laws proscribing cell phone use while 
driving had sustainably lower usage rates but also that police citation rates were low. 
However, because the research was conducted with video evidence, they were unable 
to determine if the decrease was simply due to drivers switching to hands-free devices. 
Atchley, Hadlock, and Lane [19] evaluated the slow pace at which social and behavioral 
norms affect driver behavior, finding that drunken driving laws have heavily influenced 
the public’s perception that this behavior is wrong but that similar attitudes about cell 
phone use while driving have yet to achieve the same impact, especially among 
younger drivers. 

This research also does not focus on temporal trends [20, 21, 22] or weather-related 
incidents [23, 24, 25]. These are areas that could likewise inform transportation safety 
decision making and which have also been studied as noted by the representative 
citations given. However, it was the mandate of the topic generated by ODOT that 
roadway characteristics and especially geometrics be the focus of this project. 
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2.0 BACKGROUND 
 
This section places the research problem in context and establishes a basis for the 
research conducted in this study. The first section below reviews initiatives, laws, 
mandates, and programs in the area of highway safety at the federal, state, and tribal 
levels, in particular issues pertinent to rural areas. The second section summarizes 
notable academic/applied research as published in peer-reviewed journals on the topic. 
The two sections necessarily overlap and intertwine, as the results of academic work 
have informed policy/practice and vice-versa. However, the first section largely contains 
a review of public initiatives as well as statistics on the nature of the problem, whereas 
the second section summarizes the methodological approaches and statistical results 
found in academic research. 

2.1 Public Policy Initiatives and Studies 

Since public roadways are almost by definition built by governmental entities, and 
furthermore most crucial datasets pertaining to crashes are similarly collected and 
maintained, it is important to first review the initiatives and statistics originating from 
these governmental agencies. These statistics and initiatives help provide context for 
the research undertaken in this project. 

2.1.1 Federal Agencies 
The current framework for addressing highway safety in the United States was 
established in 1997 with the publication of the Strategic Highway Safety Plan (SHSP), 
identifying twenty-two emphasis areas in six categories. One of the six categories is 
“Highways”, under which are listed the following emphasis areas relating to crashes: 
trees, run-off-road (ROR), horizontal curves, utility poles, unsignalized intersections, 
head-on collisions, head-on collisions on freeways, and work zones [6]. As part of this 
initiative, the National Cooperative Highway Research Program produced volumes for 
each emphasis area as part of its Report 500 series. Particularly pertinent to this 
research are several volumes that address roadway design elements, the physical 
properties of roads indicated earlier that are the focus of the research. 

Volume 3 addresses collisions involving trees in hazardous areas, noting that trees are 
the most common object struck, comprising about 8% of all fatal crashes and about 
one-third of all crashes involving fixed objects. Furthermore, of all fatal tree crashes, 
90% occur on two-lane roads and 77% occur in rural areas [26]. Another subset of fixed 
objects is utility poles, the subject of Volume 8, which notes that there are 88 million 
utility poles on highway rights of way in the United States, and in 2002 there were over 
1,000 fatal crashes involving utility poles [27]. 
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Both types of crashes above are a subset of the larger problem of ROR crashes, the 
topic of Volume 6. Reducing ROR fatality crashes involves a three-step objective: first, 
keeping vehicles from leaving the road; second, minimizing the likelihood of crashing 
into a fixed object or overturning once a vehicle travels off the shoulder; and third, 
reducing the severity of those crashes not prevented by steps one or two [1]. Leaving 
the roadway often results in one-vehicle crashes, but another subset is that of head-on 
collisions, addressed in Volume 4. Statistics from the late 1990s indicated that 75% of 
head-on crashes occurred on rural roads and also that 75% occurred on undivided two-
lane roads (85% aggregate). Surprisingly, passing situations only accounted for slightly 
over 4% of head-on crashes. Equally counterintuitive, less than one-third of crashes 
occurred on curves [28]. In 2002, horizontal curves accounted for about 25% of fatal 
crashes, mostly on rural two-lane highways that are not part of state DOT systems. Of 
the curve-related crashes, around 76% were single vehicle, ROR crashes striking fixed 
objects, and about 11% were head-on crashes. With an estimated 10 million horizontal 
curves in the United States on two-lane highways and few highway agencies linking 
highway geometrics to accident data [29], this could be an area of significant 
contribution of this research. 

Given these statistics and emphasis areas, a key document for transportation planners 
is Volume 21, which addresses safety data and analysis. This guide reviews state and 
local crash data sources, FARS, state inventory data, and also discusses the role of 
Geographic Information Systems (GIS) [30], and was thus a critical resource for this 
research. Of note, Section IV of this report (Roadway Segment Programs) discusses 
two different approaches to targeting areas for safety improvements, spot (aka “black 
spot” or “high-crash location”) analysis and systematic approaches. Though black spot 
approaches have historically been more common, the FHWA has pushed for inclusion 
(if not a focus) of system approaches in SHSPs. More recently, the TRB has published 
a research results digest (#345) focusing on black spot and systematic methods based 
on a survey in which 25 out of 50 state traffic safety engineers responded (Oklahoma 
did not). The results indicate that most states still target safety funds at HCLs [14], but 
many states are shifting some of their funding towards systematic approaches. 
Conceptual and methodological differences in these two approaches, and the results 
found by applying both methods, will be reviewed later in the academic and applied 
research section (Section 2.2). 
In 2005, the SAFETEA-LU legislation provided over $244 billion of guaranteed funding 
for highways, highway safety, and public transportation, with $5.1 billion allocated 
between 2006 and 2009 for states to address their needs. Of the roughly $1.2 billion 
annual allotment, $90 million was to be set aside annually for the High Risk Rural 
Roads Program (HRRRP) as part of the Highway Safety Improvement Program (HSIP) 
[31]. Through four years of the HRRRP (as of 2009), states had under-requested funds 
based on FHWA expectations, raising concerns that there were impediments to 
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implementing the program. A study revealed that the most common problems at the 
state level were: collecting crash data on locally-owned roads; determining the criteria 
for selecting the best projects, soliciting proposals, and choosing projects to fund; 
coordinating with federal, state, and local agencies; and working within state law to 
administer HRRRP funds [12]. Thus, a myriad of challenges exists to improve rural 
highways and their crash fatality rates, even with secure sources of funding, so a review 
of state-level efforts is given next. 

2.1.2 State Agencies 
The HSIP required all states to submit SHSPs by October 1, 2007 in order to make full 
use of these funds; Oklahoma published its SHSP in September, 2007 [7]. Motivating 
and informing Oklahoma’s SHSP was the fact that traffic fatalities had increased 14.1% 
from 2000 to 2005 and the fatality rate per HMVMT had risen to 1.71, compared to a 
U.S. rate that had declined to 1.45. A large number of stakeholder and constituencies 
were involved in the development of the state SHSP [7] which aspired to a vision of 
“…zero deaths, zero injuries” but more practical goals of achieving 20% reductions in 
both fatalities and serious injuries per HMVMT, by 2015. The participants reached 
consensus on four emphasis areas for the state: unsafe driver behavior, intersection 
crashes, crashes involving young drivers, and lane departure crashes [7]. While the 
intersections emphasis area relates to this research since it might reveal that rural 
highway intersections are a problem area in the state, the lane departure emphasis area 
very directly impacts this research. 

Following the strategies listed in Report 500: Volume 6 [1], the state SHSP proposes 
the same three-step objective function listed earlier for preventing lane departure 
crashes, and state initiatives seem to be working. After experiencing 803 roadway 
fatalities in 2005, Oklahoma deaths dropped steadily to 766 in 2007 and to 668 in 2010, 
well below the target goal of 726 set for 2011. Likewise, serious injuries fell from 17,663 
in 2007 to 16,077 in 2009, though they increased to 16,557 in 2010 [11]. 

However, Oklahoma still lags national averages in several areas. Fatalities for drivers 
with blood-alcohol content (BAC) of 0.08% or more have slightly risen, motorcycle 
fatalities have risen, and 2008 saw a modest rise in unrestrained passenger fatalities 
[32]. These factors are less controllable by state (or any other) agencies as they involve 
driver and passenger choices, but nonetheless said agencies have education, 
awareness, and safety programs in place to encourage safer driving behaviors. 
However, in part motivated by the research emphasis promulgated by ODOT for this 
research effort, and in part because roadway design is something that ODOT and 
others can directly affect, the research conducted here focuses on physical 
characteristics of the roadways and their correlations with various types of crashes. 
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Because Oklahoma possesses unique traits, a tailored approach to this research is 
necessary. Oklahoma’s territory is largely rural, but 65% of the population in the 2000 
Census was classified as urban. However, based on 2007 FARS data, Oklahoma was 
one of twenty states in which 70% or more of highway deaths were on rural roads. Also 
that year, 69% of fatal crashes took place on the state highway system [14]. Hence, 
rural, state-roadway deaths remain a chronic problem in the state, and the state has a 
large territory to manage. Oklahoma’s roadway system consists of 113,147 total miles. 
In 2000 mileages were calculated as: 669 miles of interstate highway, 559 miles of 
turnpike, 11,601 miles of state and federal highways, 284 miles of state park roads, 
86,665 miles of county roads, and 12,865 miles of local city streets [32]. 

Another trait that distinguishes Oklahoma from many other states is the strong presence 
of Native American population and tribal governing entities. Oklahoma ranks second in 
the nation (behind Alaska) in its citizens declaring Native American ancestry in the 
Census, and 38 different tribes administer federal and tribal lands through the Bureau of 
Indian Affairs (BIA) or Tribal Governments. Overall, including National Park, U.S. 
Forest, and U.S. Fish and Wildlife Service Units, about 4.5% of the total state area is 
federal land acreage, including 9,675 Federal Lands Highway Program (FLHP) road 
miles [33]. Both nationally and statewide, these tribal areas likewise adopted SAFETEA-
LU-related safety plans and focus areas. 

2.1.3 Tribal Agencies 
While traffic fatalities in the United States declined by 2.2% between 1975 and 2002, 
they increased by 52.5% on reservations [34], with a further caveat that “underreporting 
is highly likely and that the statistics may be considerably worse” [35], a finding 
confirmed by Bailey and Huft [36]. While Oklahoma is not listed as one of the top five 
states (Arizona, Montana, South Dakota, New Mexico, and Idaho) that account for over 
80% of Indian reservation fatalities, this could be due to different definitions of 
“reservation” in the various states and the fact that Oklahoma’s situation is unique 
regarding tribal jurisdictions and recognition. Nonetheless, the problems and strategies 
outlines for reservations nationwide are applicable here. The traits cited in government 
statistics and academic research indicates that occupant restraint levels are lower, 
alcohol/drug-impaired driving levels are higher, and unsafe driving is higher for Native 
Americans than the national average [15, 35]. 

Numerous emphasis areas are highlighted in the Indian Lands SHSP, but two that 
directly relate to this research are the need for better data collection and the prevention 
of ROR crashes [35], which is clearly a cross-cutting problem and safety strategy at all 
levels. In Oklahoma, a Tribal Transportation Safety Summit was held in April 2010 to 
address state-level concerns and strategies. This summit worked towards crafting a 
process to facilitate collaboration among tribal, local, state, and federal entities with a 
goal of solving transportation safety issues. Within the “4-E” approach (engineering, 
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education, emergency response, and enforcement), engineering challenges included 
maximizing data collection and developing a data sharing system. This research 
integrates well into these areas. 

In summary, many federal, state, and tribal initiatives are in place to address numerous 
dimensions of safety improvement on the nation’s roadways, with an overall goal of 
reducing fatalities and serious injuries by ameliorating the many factors that cause 
automobile (and motorcycle) crashes in the United States. The initiatives and statistics 
reviewed above, however, only tell half the story – what the problem is and how it is 
being addressed. Informing these policies and “best practices” is a large body of 
academic research into the root causes, statistical relations, and best methods for 
uncovering correlations between crash types and roadway features, predicting likely 
future crash locations based on roadway design, and making recommendations for 
design and engineering solutions. Pertinent literature in these areas is reviewed next. 

2.2 Academic and Applied Research 

2.2.1 Data Limitations 
Out the outset, collecting, obtaining, aggregating, geocoding, and even defining the data 
needed for this type of research occupies most transportation researchers in their 
pursuit of specific research questions. Ultimately, this research seeks to identify 
hazardous locations on Oklahoma’s rural roadways, so identifying similar research and 
understanding Oklahoma-specific limitations will be an important area of background 
research. A recent study of eight European countries documented state-of-the-art 
approaches to the identification and management of hazardous locations. Notable 
features of current methods includes: applying a sliding window approach (similar to 
moving averages in time series analysis), use of the empirical Bayes (EB) method for 
generating estimates of expected accidents at sites, and use of an appropriate period of 
data for accident estimation [37]; between three to five years is an oft-cited figure [38, 
39, 40]. As noted earlier, an unfortunate trait of Indian lands in the U.S. is 
underreporting of crash and fatality data. Even so, in South Dakota from 2001 to 2005 
Native Americans accounted for 26% of traffic fatalities (in FARS) in the state, and a 
study estimated that in one county (Shannon) reported crashes represented, at best, 
only about half of the real number of crashes that occurred in 2003 [36]. Though the 
research described here cannot encompass data quality or quantity improvement 
techniques, it is critical to understand the difficulties associated with research of this 
type and that no standard practices exist. This research has undertaken the collection 
and use of data in ways that seemed best suited to the overall research goals and are 
described later in Section 3. 
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2.2.2 Methodological Approaches 
High risk location identification methods (i.e., black spot, hot spot, high-crash location 
analysis) remain firmly entrenched in the literature, largely because of past policy and 
the relatively easier identification of such locations with existing data. For a long time in 
the United States, this was the modus operandi because of a focus on reducing the 
overall number of crashes of all types, under the two assumptions that (1) there were 
few differences in the factors contributing to the various types of crashes, and (2) if total 
crashes were reduced, proportional reductions in fatalities and serious injuries would 
follow. While true through the 1980s, eventually the drop in fatalities leveled out at about 
42,000 per year, though the fatality rate per HMVMT did continue to drop (TRB 2010). 
Black spot analysis has not been effective in reducing serious crashes and fatalities in 
rural areas where a majority of fatalities occur. As a result, the national SHSP sought to 
refocus efforts on higher-speed, rural, single-vehicle crashes, as those tend to be more 
severe and account for a disproportionate share of fatalities. Also, a majority of fatalities 
occur on local, not state, roads [6]. These statistics have focused attention on the need 
for system-wide methods for identifying locations at risk for severe crashes where 
traditional methods of calculating crash rates cannot distinguish safe from dangerous 
locations [14]. 

Spatial analysis techniques have also been applied to the problem of black spot 
analysis. Songchitruksa and Zeng [41] applied spatial autocorrelation statistics black 
spot analysis in Houston, demonstrating the need for additional care in conducting 
spatial analysis on crash location data. In a similar vein, Flahaut, Mouchart, San Martin, 
and Thomas [42] compared two different spatial autocorrelation measures, a kernel 
method and local Moran’s Ii, to study black spots, finding merits for each method 
depending on the local setting and safety needs. Flahaut et al. were motivated by an 
earlier study by Thomas [43] that examined the influence of road segment length on 
statistical results. This was not a spatial analysis approach per se, but represented early 
recognition that explicitly geographic traits of the crash analysis framework are of critical 
importance, and that conclusions made at one level of spatial aggregation may not hold 
at other levels. Also related to spatial scale, Quddus [44] and Wang, Quddus, and Ison 
[45] examined crash data for British census wards in London and across all of England 
to determine the various effects of infrastructure, traffic flow, speed, and road curvature 
on crash frequencies. Furthermore, Quddus used a global spatial autocorrelation 
statistic to account for spatial dependence of the various influences on crashes [44]. 
Erdogan [46] studied road mortality in Turkey using geographically-weighted regression 
(GWR) to account for spatial non-stationarity in crash data, while Aguero-Valverde and 
Jovanis [47] found no spatial correlation in fatality data but did find it present in injury 
crash data. Hence, spatial analysis methods are improving research in this area. 
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The overriding issue when studying rural areas is statistical; crashes are relatively 
infrequent but more often severe, so innovative methods are needed that work with 
sparse data to tease out subtle differences in crash locations. Research methods must 
contend with the fact that many highway segments will have no crashes or fatalities 
during the study period, skewing the data and biasing many statistical methods. Cafiso, 
Di Graziano, Di Silvestro, La Cava, and Persaud [48] addressed this topic by studying 
different ways of partitioning highways into usable analysis “segments”, finding that 
smaller homogeneous segments of between one-half and five kilometers in length 
provide for better analysis of rural crash data vis-à-vis exposure and geometry 
variables. Using a “left-censored” dependent variable in a Tobit regression with data for 
Indiana interstates, Anastasopoulos, Tarko, and Mannering [38] found a variety of 
significant influences on crash rates relating to pavement conditions, highway 
geometrics, and annual average daily traffic (AADT). In the southeast United States, 
Zhu, Dixon, Washington, and Jared [49] found that lane width, horizontal curvature, and 
lighting were the only variables significantly and consistently associated with single-
vehicle fatal crashes on two-lane rural highways. Similarly, Deng, Ivan, and Gårder [50] 
studied head-on collisions on rural, two-lane Connecticut highways and identified 
pavement width as the most consistent factor influencing the severity of such crashes. 
In Ohio, Schneider, Savolainen, and Moore [51] identified horizontal curvature as a 
significant influence on rural motorcycle crashes on two-lane highways, along with 
shoulder width and AADT. Likewise, Karlaftis and Golias [52] found differences between 
two-lane and multi-lane roads in Indiana; overall, geometric variables and pavement 
condition variables most significantly affected accident rates. 

A large body of literature has analyzed crash rates and crash locations [53, 54, 55]. As 
can be inferred from the discussion above, there are many potential contributing factors 
in automobile crashes. As a result, most studies use some form of multiple regression to 
relate crash characteristics to factors such as weather, gradient, and intersection 
characteristics [56, 57, 58]. Standard linear regression, however, suffers from certain 
limitations. Linear regression relies on the assumptions of the normal distribution and 
lacks the “distributional property necessary to describe adequately the random and 
discrete” nature of crash events [59, p. 471]. Specifically, the dependent variable is 
usually a discrete, non-negative integer (crashes, fatalities, etc.) while regression 
models predict continuous values of the dependent variable that can be negative. 
Crashes, however, are random events that occur independently over time and are 
usually positively skewed. Consequently, Poisson and negative binomial (NB) 
regression models are frequently used to model and predict the relationship between 
road characteristics and crash frequencies or severity [52, 59, 60, 61]. 

The Poisson model is well-suited to modeling crash data because the number of 
crashes in a given space-time region can be considered as a random variable with 
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probabilities that are Poisson-distributed [60]. A standard formulation of a Poisson 
regression model is: 

𝑃𝑃(𝑦𝑦𝑖𝑖) =  
𝐸𝐸𝐸𝐸𝑃𝑃(−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 

where P(yi) represents the probability of roadway segment i experiencing yi crashes per 
time period (year) and λi is the Poisson parameter for segment i (equal to the segment’s 
expected number of crashes per year). The Poisson parameter λi is typically estimated 
from a linear regression in which any number of explanatory (independent) variables 
(Xi) that represent highway traits are used: 

𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝐸𝐸𝑖𝑖) 

The slope coefficients β from this regression (in exponential form) provide important 
information on both the direction and influence of each independent variable Xi on the 
number of crashes [62]. Negative slope values for β indicate a variable lowers the risk of 
crashes relative to other variables and positive values indicate the variable raises the 
risk. 

The Poisson model has been used in many crash studies. Miaou [59], Miaou, Hu, 
Wright, Rathi, and Davis [63], and Miaou and Lum [64] employed Poisson regression to 
estimate truck crash rates using traffic and geometric characteristics of roads and model 
relationship between truck accidents and geometric designs of roads. Both Miaou [59] 
and Miaou et al. [63] found that AADT per lane, curvature, and mean absolute grade or 
vertical alignment significantly correlated with truck crash rates. Saccomanno, Grossi, 
Greco, and Mehmood [65] developed a Poisson model to estimate expected crash 
frequency along homogeneous segments of highway sections in southern Italy using 
crash and road geometric data from 1993 to 1999. Since the AADT was uniform for 
entire road sections, length of road segments was used to measure crash exposure and 
the study found that the length of the section, number of private driveways, number of 
major intersections, and the change in 85th percentile speed from the previous road 
section were significant determinants of crash frequency. 

One of the major criticisms of the Poisson regression model is that it assumes the 
variance and mean of the data are equal (isodispersion); overdispersion means the 
variance exceeds the mean while underdispersion means the opposite. Many studies 
have found the assumption of isodispersion does not hold, as crash data especially tend 
to be overdispersed [52, 61, 62]. The negative binomial (NB) regression model 
overcomes the problem of overdispersion by allowing the variance to exceed the mean. 

The negative binomial (NB) model is a variant of the Poisson model and assumes that 
the Poisson parameter follows a gamma probability distribution; as a result the NB 
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model is also known as the Poisson-gamma model and overdispersion in crash data do 
not negatively affect model validity [61]. Here the Poisson parameter is found by: 

𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝐸𝐸𝑖𝑖 + 𝜀𝜀𝑖𝑖) 

where EXP(εi) is a gamma-distributed error term that has a mean of 1 and a variance of 
α. This term, known as the overdispersion parameter, allows the variance to differ from 
the mean [62]. 

Hadi, Aruldhas, Chow, and Wattleworth [66] employed NB regression to estimate crash 
rates on various types of rural and urban highways of different traffic levels. Results 
suggested that higher crash frequencies were influenced by AADT and intersections 
and wider road shoulders and lanes were effective crash reduction measures. Shankar, 
Mannering, and Barfield [67] used NB regression to study how roadway geometrics and 
environmental factors influence crash frequency. They found significant correlations 
between fewer (well-spaced) numbers of curves per mile of road section and an 
increased number of severe overturning vehicle crashes. Brown, Labi, Tarko, and 
Fricker [68] obtained and used crash and road inventory data for Indiana from 1991 to 
1995 to develop crash prediction models for crash rates on road segments based on 
geometric and access control characteristics, using NB regression to develop crash 
prediction models for all crashes, for property-damage only crashes, and for fatal and 
injury crashes. Results of the study indicated that the increased access density and 
proportion of signalized access led to an increase in the number of crashes on roadway 
segments, whereas lower crash frequencies were associated with the presence of 
outside shoulders on roadways, two-way left-turn lanes, and medians without openings 
between signals [60]. 

Generally, the Poisson model is initially used to analyze the relationship between 
crashes and roadway characteristics. The NB regression model and other variants are 
then explored when over- or underdispersion is detected in the model following the 
Poisson regression analysis [59]. However, Berk and MacDonald [69] argued that poor 
model performance is just as likely to result from omitted variables or from an incorrect 
systematic part of the Poisson regression (as opposed to an incorrect stochastic part of 
the model, i.e., over- or underdispersion). Other limitations of Poisson and NB 
regression models have been identified, including their sensitivity to outliers, inadequate 
handling of missing data, inability to deal well with multicollinearity in independent 
variables, and the fact that they are both parametric procedures that require the 
functional form of the models to be known in advance [52]. Nonetheless, both 
techniques are still widely used to model relationships between crashes and the 
geometric and environmental factors that may influence them, while numerous 
alternatives also exist as summarized by Lord and Mannering [62]. 
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2.2.3 Engineering, Design, and Management Studies 
In addition to identifying the traits of existing roadways that contribute to severe 
crashes, several recent studies evaluated the impacts of specific treatments. Using data 
from Arkansas, California, Illinois, and North Carolina, Lyon, Persaud, Lefler, Carter, 
and Eccles [70] employed the EB method to study the effects of installing two-way left-
turn lanes (TWLTL) on two-lane roads and found a significant reduction in crashes, 
further finding that TWLTLs were more effective in rural areas. In Oklahoma and Texas, 
Eisele and Frawley [71] studied test corridors where TWLTLs were replaced by raised 
medians and determined that the increased inconvenience caused by longer travel 
times was offset by increased safety and fewer conflict points. Though conducted in 
Spain, Pérez [72] used the EB method and found that upgrading highways (via a variety 
of engineering and safety treatments) significantly improved safety while improving 
traffic signage, repainting road markings, and repaving highway surfaces did not. 

Though tangential to this study, management and enforcement policy studies can 
provide useful insights. Malyshkina and Mannering [73] studied the issue of roadway 
design from the perspective of whether approved design exceptions had an impact on 
the frequency or severity of crashes. While overall design exceptions were not found to 
contribute to significantly different levels of traffic safety, they cautioned that notable 
differences existed between rural and urban areas and also that horizontal curvature 
and pavement roughness (as measured by IRI) was very critical and deserved greater 
scrutiny when design exceptions are requested. Using Ohio data for 1973 to 2000, 
Welki and Zlatoper [74] found that drunk-driving enforcement, higher speed limits, and 
rural driving all significantly increased fatalities. 

Given the higher level of alcohol-related fatalities cited earlier in both rural locations and 
on Indian lands and the higher speed limits on rural roads, these results can reinforce 
and inform current efforts by ODOT, OHSO, and others in coordinating their efforts to 
tackle the highway fatality problem in the state. In a similar study for Ohio using 1975 to 
2000 data that disaggregated six types of vehicular fatalities, Welki and Zlatoper [75] 
found that the positive effects of speed limit enforcement and drunk-driving arrests cited 
in their 2007 paper did not affect all socioeconomic groups equally, motorcyclists in 
particular. With a 52% increase in motorcycle registrations in Oklahoma between 2005 
and 2009 [32], this is a potentially overlooked area needing attention as motorcycle 
fatalities have been on the rise in Oklahoma in this same period [11]. 
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3.0 DATA 
 
3.1 Basic Datasets 

This research integrates fatality data and roadway data. Fatality data were obtained 
from the federal FARS dataset (http://www.nhtsa.gov/FARS) from 1998 to 2011, 
including 5,635 crashes resulting in 6,667 total fatalities in Oklahoma during that period. 
The FARS database includes dozens of fields relating to the vehicles involved, crash 
severity, location, weather, driver and passenger demographics, etc. Crashes are also 
geocoded with latitude and longitude as well as highway segment identifiers (e.g., 
Interstate 35, U.S. Highway 177). 

Highway information obtained from ODOT included road condition data and road 
inventory data. The road condition dataset has information from sensor data measuring 
roughness, rutting, and faulting, as well as observed distress information like cracks and 
potholes. The road condition data are collected on a two-year cycle and are complete 
from 2001 to 2010. Road inventory features are of three types: design, geometry, and 
other. Design features include number of lanes and the type and width of the road 
surface, shoulders, and medians. Geometric features include up/down and left/right 
grade, and curve radius. Other features include Annual Average Daily Traffic (AADT), 
elevation, and the type of terrain in the surrounding area. 

3.2 Data Integration 

Road geometry and condition data are generally reported for road segments (control 
sections), a format that requires conversion into a functional road network topology. The 
latitude and longitude of each fatal crash is matched to the highway control segment 
where that crash occurred so each crash can be assigned the design, geometry, and 
condition attributes of the control section. In addition to having to assume consistent 
condition and design traits along each control segment, this also places limitations on 
the type of analysis possible. The observations are discrete points with various highway 
attributes matched to those points, and the dependent variable is a discrete tally of 
fatalities at each location where fatalities occurred. As road traits at a location can 
change over time, each crash record is treated as an independent event to distinguish it 
from other fatal crashes on the same control segment but at a different time. 

The following provides a concise list of specific steps undertaken to assemble the geo-
database: 

1. Download the GIS shapefile of crashes (from 1998 to 2011) from the Oklahoma 
SAFE-T website using the query (Crash98_11). 
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2. Create a personal geo-database and save the shapefiles: Oklahoma crashes, 
control sections, highways, counties, and cities. Note: the Feature Dataset is 
projected to Albers_USGS Version. 

3. Open ArcMap document and add the crash and fatal crashes feature classes 
along with the Oklahoma highway feature class. 

4. Create a new field in both fatal crashes and highways feature classes. New field 
is control sections. 

5. Right-click on the fatal crash layer > Joins & Relates > Join (a Join Data window 
opens). In the first drop down box, click the drop down arrow and select “Join 
attributes from table.” 
 

This join operation joins the highways layer to the fatal crash layer based 
on control section field. Important attributes of both layers are joined 
together to allow for easier query of the database. 

 
6. Right click of fatal crash layer [joined with highways], navigate to data, then 

export, choose personal database, name [fatalities_final], save. 
 

The new join output (point) layer now has the important fields of the 
highway layer combined with that of the fatal crash layer. Now all crash 
records contain information on the road sections where they occurred. 

 
7. Load the new layer [fatalities_final] in ArcMap. 
8. Open attribute table and exported it as DBF to the personal geo-database. 
9. Open DBF in Excel and edit out repeated fields (e.g., surface type/width, median 

type/width) which were in both highways and fatal crash layers. Also at this 
stage, edit out fields that are not used (e.g., mileposts, cities, counties). 

10. Save file as an Excel file [Complete_Dataset_Final_original]. 
11. Import Excel file into SPSS for statistical analysis. 

The aggregation of road inventory and road condition databases as described above 
results in dozens of potential independent variables. However, many variables are 
discarded, mostly due to low recording incidence in the datasets. Also, the geometry 
variables are converted from ratio to categorical due to the way those variables are 
measured. Table 1 summarizes the dataset by class of variable, general inventory 
characteristic, data type, and the numbers of subdivisions for categorical variables. 
While the independent variables include a mix of categorical and ratio data types, the 
dependent variable is the number of fatalities at a fatal crash location/section of 
highway, so advanced analysis methods like Poisson regression are needed to 
correlate crashes to highway conditions. 
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Table 1. Independent Variable Categories 

Class Characteristic Type Number 
Condition Roughness (IRI) Ratio 1 
Condition Rutting Ratio 1 
Design In/outside shoulder type Categorical 7 
Design In/outside shoulder width Ratio 1 
Design Intersection type Categorical 4 
Design Median type Categorical 7 
Design Median width Ratio 1 
Design Number of lanes Ratio 1 
Design Right-of-Way (ROW) width Ratio 1 
Design Surface thickness Categorical 9 
Design Surface type Categorical 3 
Design Surface width Ratio 1 
Geometry Curve radius Categorical 3 
Geometry Vertical grade Categorical 3 
Geometry Horizontal grade Categorical 3 
Other AADT Ratio 1 
Other Elevation Ratio 1 
Other Terrain type Categorical 7 

 
 
 

3.3 Descriptive Statistics 

Categorical variable distributions are given in Tables 2-5, while descriptive statistics for 
select ratio variables are given in Table 6. Categorical shares do not sum to 100% in 
some cases due to rounding and in other cases due to the omission of some categories. 
 
 
 
Table 2. Distributions of Geometry Variables (Categories) 

Geometry 0 1 2 
Curve radius a 73% 14% 14% 
Vertical grade b 3% 42% 54% 
Horizontal grade c 1% 86% 13% 

a. Curve radius: 0 = straight  1 = left curve 2 = right curve 
b. Vertical grade: 0 = flat  1 = uphill 2 = downhill 
c. Horizontal grade: 0 = level  1 = left edge higher 2 = right edge higher 
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Table 3. Distribution of Median Type 

Median 
type 

 
Undivided 

Open w/ 
shoulders 

Open 
w/ curb 

Cont. left 
turn lane 

Concrete 
barrier 

Cable 
barrier 

Share 54% 34% 1% 3% 5% 2% 
 
 
 
Table 4. Distribution of Terrain Type 

Terrain 
type 

Flat 
(rural) 

Rolling 
(rural) 

Mountain 
(rural) 

CBD 1a 

(urban) 
CBD 2b 
(urban) 

CBD 3c 
(urban) 

Residential 
(urban) 

Share 28% 40% 2% 0% 3% 18% 8% 
a. CBD 1 = central business district 
b. CBD 2 = fringe of CBD 
c. CBD3 = outlying business district 
 
 
 
Table 5. Distribution of Pavement Type 

Pavement 
type* 

Armor 
coat 

Asphalt 
concrete ‘B’ 

Asphalt 
concrete ‘C’ 

P.C. 
concrete 

All other 
types 

Share 11% 41% 15% 18% 15% 
* Pavement type definitions from ODOT Road Inventory Manual, 7th Edition [76]. 
 
 
 
Table 6. Descriptive Statistics for Ratio Variables 

Variable Minimum Mean Maximum St. dev. Records Units 
IRI 25 108.2 600 64.1 5338 none 
Rutting 0.00 0.18 1.02 0.09 5558 inches 
Shoulder width 0 7.3 19 3.2 5593 feet 
Median width 0 18.4 99 25.7 5616 feet 
Surface width 18 28.5 96 10.6 5616 feet 
R.O.W. width 33 187.2 460 93.0 4488 feet 
Lanes 2 3.1 8 1.3 5616 count 
Base thickness 0 6.2 19 3.2 5588 inches 
AADT 50 15,804 165,200 23,033 5616 count 
Elevation 300 933 4,744 461.1 5490 feet 
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4.0 ANALYSIS AND RESULTS 
 
Analysis was conducted in three stages. Initially, a trial analysis was conducted for 
thirteen counties in northeastern Oklahoma (Figure 2) as a means of developing 
experience with Poisson and NB regression as well as to study the portion of the state 
that has the highest percentages of Native American citizenry. While 12.9% of 
Oklahoma’s total 2010 population of nearly 3.8 million claimed some type of Native 
American ancestry, collectively these thirteen counties are 26.0% Native American with 
Adair County being the highest in the state at 53.4% [77]. These counties are primarily 
rural and cover the Native American tribal territories of the Cherokee, Eastern Shawnee, 
Miami, Miami-Peoria, Modoc, Peoria, Ottawa, Quapaw, Seneca-Cayuga, and 
Wyandotte nations. 

Subsequently, a Poisson regression model was run using data for the entire state. 
Explorations of both Poisson and NB regression models revealed that (1) very few 
differences resulted between both models when run for the same dataset, and (2) very 
few variables of interest exhibited either over- or underdispersion. Thus, only Poisson 
regression is discussed in Section 4.2. Finally, Poisson models were run for each of 
ODOT’s eight field divisions. Though not requested or mandated, this seemed like a 
logical means of disaggregating the state. Any regionalization scheme would have 
sufficed, but since ODOT is the most likely agency to act on any findings, region-
specific outcomes have the highest potential of being useful to ODOT. These results are 
discussed in Section 4.3 along with comparisons to the state-wide model reviewed in 
Section 4.2 as the independent variable set was the same for the state and field division 
models. 

On a methodological note, both Poisson and NB models can be run unweighted or 
weighted. Weighted models were used here because of the temporal and spatial nature 
of the data. Many highway sections during the study period (1998-2011) have 
undergone deterioration, repair, and/or redesign, so the road inventory and design 
attributes could have changed over time. To account for changing road conditions over 
time, each crash was treated as an individual record and the roadway characteristics at 
the time of the crash were connected to that crash record. While this approach was 
necessary to account for changing road conditions, treating each crash as an 
independent event made it difficult to identify control segments with higher fatality crash 
rates. Therefore, the number of crash fatalities at a location served as a weight so that 
“dangerous” locations (i.e., those with more deaths) were more heavily weighted that 
those with fewer deaths. 
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Figure 2. Northeastern Oklahoma Study Area 
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4.1 Northeastern Oklahoma Poisson and NB Models 

As demonstrated in the literature [62, 69], Poisson regression is the logical starting point 
for regressions involving a dependent variable that is a non-negative integer (here, 
fatality counts). Due to the possibility of overdispersion in the data as well as for 
comparative purposes, an NB regression model is also constructed. 

The Poisson regression model fits the crash data well (Table 7). The model has a 
standardized deviance (deviance/df) of 0.419, easily meeting the rule of thumb that the 
size of the raw deviance (524.96) should not be larger than twice the number of degrees 
of freedom (1,252). Furthermore, the omnibus test of goodness-of-fit, the chi-square test 
of the likelihood ratio, is significant to at least the α = 0.001 level. This test compares the 
fitted model against an intercept-only model, which tests the null hypothesis of no effect 
of the independent variables. 
 
 
 
Table 7. Poisson and NB Regression Results, Northeastern Oklahoma 

Model parameters Poisson NB 
Deviance/df 0.419 0.146 
AICc 3,471 4,289 
Chi-squared/p-value 170/0.000 43.9/0.000 
Observations (n) 1,284 1,277 

 
 
 
Descriptive statistics were examined for evidence of over- or underdispersion. The lack 
of isodispersion was not chronic, but when it existed it tended towards overdispersion. 
Since no underdispersed variables were factors in the Poisson model (e.g., number of 
lanes, pavement rutting), the NB model is pursued next as a hedge against violations of 
the Poisson model’s assumptions as well as for comparative purposes. 

Results for the NB regression model are also shown in Table 7 and the determination of 
which model is “better” depends on which model fit statistics are deemed most 
important. The Poisson model has a lower Akaike Information Criterion (AICc) value, 
indicating less information loss in the Poisson regression model, and the Poisson 
omnibus test has a smaller p-value, though both models are significant to at least the α 
= 0.001 level. However, the NB model produces a smaller standardized deviance, which 
is perhaps a function of the optimization goals of that method. Ultimately, both models 
are significant, have a very good fit, and meet the basic assumptions of the models. 
This outcome provides confidence that either approach is sufficient for analysis. 
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Numerous independent variables are significant predictors of fatality crashes in both 
models (Table 8), though individual components of categorical variables (e.g., surface, 
intersection, and terrain types) have varying levels of significance for their parameter 
estimates. The surface type results are somewhat misleading, because despite a wide 
variety of possible pavement surfaces based on standard coding, just three main types 
dominate the highway surfaces in northeast Oklahoma. This result is largely a reflection 
of the fact that nearly all highway fatalities in the study area/period occurred on these 
three surface types (asphalt concrete types C (S5), B (S4), and Portland Cement 
Concrete) [76]. 
 
 
 
Table 8. Variable Model Effects Significance, Poisson and NB Models 

Model Variables Poisson NB 
Intersection type 0.000 0.118 
AADT 0.003 0.000 
Roughness (IRI) 0.003 0.002 
Median Type 0.004 0.000 
Surface Thickness 0.008 0.009 
Elevation 0.013 0.082 
Surface Type 0.016 0.011 
Median Width 0.018 0.000 
Radius 0.047 0.069 
Terrain Type 0.075 0.000 
Grade 0.525 0.973 

 
 
 
Unsurprisingly, AADT, pavement roughness (IRI), and several design characteristics 
significantly correlate to locations of highway crashes resulting in fatalities. Median 
width is inversely related to fatality counts, which is logical as wider medians will provide 
more run off room and lessen the chances of a head-on collision. Among the various 
median types, “open with a combination of curbs and shoulders” (type 3) has the 
highest impact on fatality counts while “open with curbs” (type 2) has the only inverse 
relationship with fatality counts. Surface thickness is a variable that is harder to directly 
correlate to crash rates, though most individual thickness levels are not as significant as 
the overall effect of this trait in the model (thickness depths are reported in one inch 
(ordinal) ranges rather than as continuously measured depths). Radius barely meets the 
standard α = 0.05 significance threshold while grade proves unrelated. The appearance 
of elevation as a fairly significant variable in both models is curious, as elevation alone 
should not directly impact driving safety as related to the risk of a fatal accident. It is 
likely that this variable is indirectly measuring other influences (perhaps regional/cultural 
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differences across the state) on fatality crashes relating to location in the study area, 
given that grade is not significant (i.e., if elevation and grade were both significant one 
might expect a lot of fatalities on steep, hilly highways). 

Most variables achieve approximately the same significance values across the two 
models, which is not surprising given that both methods “are responding to the same 
expected mean function” [69, emphasis in original]. While moderate differences exist, 
especially for individual variable parameters and significances, overall there is little 
substantive difference between the two models. While this result could be considered to 
render the NB model redundant and therefore unnecessary, the consistency of the two 
models increases the confidence that the highway traits found to significantly predict 
fatality crashes in northeastern Oklahoma are useful areas for traffic planners and 
engineers to evaluate and develop safety treatments for system-wide application. 

4.2 State-Wide Poisson Model 

Results for the entire state highway network reveal a handful of significant predictors of 
fatal crash sites. Table 9 presents the results for the state-wide model, with seven 
variables achieving 0.05 significance (α) or better: vertical grade, terrain type, outside 
shoulder width, surface type, surface thickness, median width, and median type. 
 
 
 
Table 9. State-Wide Poisson Model Results 

 Omnibus test 
Deviance/df AICc Observations Indicator Likelihood 

ratio χ2 
Model 

significance 
State model 254.9 0.000 0.379 17,127 6,536 

 
 
 
The omnibus chi-square test results indicate an overall strong fit of the model, rejecting 
the null hypothesis of no effect of the independent variables, while the ratio of the 
deviance to degrees of freedom (df) permits comparisons between models. This ratio 
permits comparisons between all models run. Generally, a model is considered to have 
a good fit if the ratio is less than 2, which is the case here. In contrast, the AICc is 
sensitive to the magnitudes of the models and is used primarily to compare Poisson and 
NB models (not shown), rather than to compare between Poisson models. One statistic 
that does not result from running Poisson regression is an R2 value as occurs with 
standard regression analysis, so the statistics above must be used to evaluate overall 
model performance and, later, to compare performance across the eight field divisions. 
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Evaluation of independent variables is also different with Poisson models, as categorical 
variables can have significant model effects as a group while few individual divisions 
(e.g., the nine total median types or the seven total terrain types) actually prove to be 
significant. Also, categorical variables are treated in the same way as dummy variables 
in ordinary regression, in that one category must be left out to avoid redundancy 
(multicollinearity). This means that interpretations of slope coefficients of categorical 
variables, in exponential form (EXP(β) or eβ), are expressed relative to the omitted, final 
category. Raw negative slope coefficients (less than 1.0 in exponential form) indicate 
that a given category type contributes to proportionally fewer fatal crashes than does 
the redundant category, while raw positive coefficients (greater than 1.0 in exponential 
form) imply the reverse. However, slope coefficients for ratio variables can be evaluated 
in the usual way, with negative slopes indicating an inverse relationship with the 
dependent variable and positive slopes indicating direct relationships. 

Vertical grade is the most significant (α = 0.000) variable in the state model. Downhill 
grade is the redundant category (parameter eβ = 1.0); the exponential parameter for 
uphill grades is 1.67 and flat highways is 0.95. Hence, uphill grades contribute to 
significantly more fatal crashes while flat roads modestly reduce the risk, relative to the 
rate that downhill grades cause fatal crashes. It may be that downhill travel affords 
drivers better views ahead to anticipate changing road geometries and oncoming traffic. 
While not a surprising finding in general, this does create challenges in the context of 
this study, as leveling hills and filling in valleys is costly, often unsightly, and thus does 
not qualify as a cost-effective treatment. In comparison, horizontal grade (“x-fall”) is 
marginally significant (α = 0.079, higher than a default level of 0.050). Right edge higher 
is the omitted category, and the parameters for both level roads and roads with a higher 
left edge are both larger than 1.0 and thus contribute more to fatal accidents than roads 
with higher right edges. However, given that 86% of all crashes occurred on highways 
with higher left edges, this result may simply be due to the overwhelming presence of 
this design aspect that is used to drain rainwater to the outside edges of the road. 

Terrain type is very significant (α = 0.001), with the residential (urban) type as the 
omitted redundant category. Both the flat and rolling terrain categories have an 
exponential parameter larger than 1.0 indicating higher contributions to fatality crash 
rates than baseline levels in residential areas. Mountainous terrain logically should be 
significant, but only two percent of Oklahoma highways are classified as such and 
drivers may practice more cautious driving in those areas. The other four urban 
categories, not surprisingly, have lower crash rates due to the generally lower speeds 
and less severe crashes that result, though none of the urban categories were 
individually significant. Overall, these results reinforce national-level studies [12, 13] that 
higher speeds and fewer safety treatments increase fatality rates in rural areas. 
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Surface type (α =0.002) and surface thickness (α = 0.005) are both significant, but these 
are harder to interpret in a meaningful way. Many surface type categories are defined 
but just five have notable representation in the dataset, as shown in Table 5. Asphalt 
type ‘E’ was the default category and only P.C. concrete among the types in Table 5 
has a parameter above 1.0. With respect to surface thickness, in which the highest 
thickness category (over nine inches in depth) is the redundant category (out of ten 
total), thickness categories 2 (two to three inches), 6 (six to seven), 7 (seven to eight), 
and 8 (eight to nine) had slope parameters greater than 1.0 in exponential form. The 
authors, unfortunately, lack the pavement engineering expertise to address these 
findings but hopefully pavement engineers can learn from these results and determine 
their significance in terms of reducing highway fatality crashes. 

Other highway design characteristics contributed significant effects in the state-wide 
model. Outside shoulder width negatively correlates with fatalities, as wider shoulders 
mean more room for drivers to recover or at least shed speed, and this variable is highly 
significant (α = 0.001). Median width is also significant (α = 0.008) with the expected 
negative sign or exponential value below 1.0, as wider medians result in fewer fatalities. 

Finally, median type is moderately significant (α = 0.051). It is important to examine this 
class of design feature due to the ways that median design can mitigate crashes. Cable 
barriers are the category type omitted due to redundancy, and relative to cable barriers 
most other median types contribute to higher crash rates, as might be expected. 
However, two median types have exponential coefficients below 1.0: “flush brick” and 
concrete barriers. Concrete barriers are even more effective than cable barriers since 
vehicles can sometimes jump over or occasionally cross through cable barriers, while 
flush brick type has no obvious explanation. However, only eight fatalities were 
recorded at locations having this type of median compared to nearly 100 with cable 
barriers (bearing in mind that this simply means that the highway had cable barriers, not 
that the fatal crash necessarily struck the cable barrier). This result is likely just a 
function of the low presence of flush brick medians on highways in the state. 

Summarizing the state-wide model, fairly logical findings are confirmed, though the data 
available limit our ability to pinpoint specific safety treatments that might greatly reduce 
fatalities on rural highways. Rural areas are much more likely to experience fatal 
highway accidents, and wider medians (especially with concrete barriers), wider outside 
shoulders, and flatter roadways all significantly contribute to lower fatality rates. Of 
equal interest, perhaps, are the variables that are not significant contributors to fatal 
accidents, even though they could be addressed through road construction practice 
and/or maintenance: outside shoulder type (α = 0.386), number of lanes (α = 0.396), 
overall road surface width (α = 0.624), curve radius (α = 0.751), pavement rutting (α = 
0.958), and pavement roughness or IRI (α =0.995). 
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4.3 Field Division Poisson Models 

Given the wide variety of landforms, terrains, climates, and traffic patterns across the 
state, Poisson regression models are developed for each ODOT field division to 
determine if regional variations exist among significant contributors to fatality accidents. 
Comparative results are provided in Table 10 for the eight field divisions along with the 
state model statistics from Table 9. Figure 1, given earlier in this report on page 4, 
shows the territories of the field divisions. Field divisions consist of either nine counties 
(divisions 2, 4, 6, and 7) or eleven counties (3, 5, and 8) except division 1 which covers 
just eight counties. Field divisions adhere to county boundaries, though this scheme is 
arbitrary and any regionalization scheme could be undertaken for sub-state analysis. 
 
 
 
Table 10. Field Division Poisson Model Results 

Field 
Division 

Omnibus test 
Deviance/df AICc Observations Likelihood 

ratio χ2 
Model 

significance 
1 124.011 0.000 0.317   2,062    754 
2   64.176 0.831 0.316   2,311    859 
3 105.798 0.046 0.363   2,776 1,002 
4   69.164 0.801 0.240   2,809 1,088 
5 183.872 0.000 0.404   1,418    459 
6   37.497 0.999 0.247      804    256 
7   74.533 0.681 0.224   1,746    660 
8 190.144 0.000 0.318   3,819 1,458 

State model 254.947 0.000 0.379 17,127 6,536 
 
 
 
As demonstrated in Table 10, field divisions 1 (east central), 5 (southwest), and 8 
(northeast) have extremely significant models while field division 3 (central) achieves 
moderate significance; these are the only areas where significant models occurred 
based on overall omnibus tests of goodness-of-fit. In contrast, field divisions 2, 4, and 7 
have very weak models and field division 6 achieves virtually no goodness of fit. With 
barely half as many observations as the field division (5) with the next fewest number of 
fatalities, field division 6 may simply not have enough data points (due to small 
populations and low densities) for a good model fit. Conversely, there may simply be no 
consistent determinants of fatal crashes in this part of the state, containing the far 
northwestern counties including the Oklahoma Panhandle. 
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It is also interesting to compare field divisions to each other (and the state model) in 
terms of individually significant variables. Table 11 lists each variable that had 
significant model effects in at least one of the nine models, while variables from Table 1 
that never proved significant are omitted. 
 
 
 
Table 11. Significant Variables in Field Division Models 

Variable Field Divisions State 
Model 1 2 3 4 5 6 7 8 

Median type         ** 
Median width    *     *** 

Outside shoulder type       ***   
Outside shoulder width  ***     **  *** 

Surface type     ***    *** 
Surface thickness   *  ***    *** 

Surface width     *     
Terrain type     **   ** *** 

Number of lanes    **      
Curve radius     *     

Horizontal grade   ***      * 
Vertical grade ***       *** *** 

*significant ≤ 0.10 level  **significant ≤ 0.05 level  ***significant ≤ 0.01 level 
 
 
 
Table 11 shows some correlation between the number of significant variables in a field 
division and the overall model significance, but the trend is not perfect. Field division 6 
has an utterly worthless regression model and hence no significant variables. However, 
field divisions 2, 4, and 8 all have poor aggregate models but each has at least one 
significant predictor of highway fatalities. In contrast, field division 1 had a very 
significant overall model but just one (very) significant predictor, vertical grade. Field 
division 5, with the second-highest likelihood ratio value (good) but the highest 
standardized deviance (bad), has the most significant variables. While this implies that 
fatal crash prediction should be more accurate in the southwest part of the state, the 
two most significant predictors were surface type and thickness, two variables whose 
influence on crashes is uncertain based on the (lack of) expertise of the researchers. 
The strength of this relationship in field division 5 was likely a significant contributor to 
the surface variables being significant in the overall state model. Further investigation is 
warranted to examine field division 5 in more detail to determine why surface type and 
thickness is so correlated to fatal accidents there. 
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An examination across the rows of Table 11 reveals that no variable is significant in 
more than two field divisions. The paucity of significant variables in each region 
challenges the ability to identify localized areas of improvement in the state’s highways, 
though the overarching goal is to identify system-wide improvements. The seven 
variables significant in the state model can thus provide some guidance to 
transportation agency personnel who are better positioned to evaluate costs versus 
benefits of the safety treatments that might be considered.  
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5.0 CONCLUSIONS 
 
This project sought to identify characteristics of fatal crash locations on Oklahoma 
highways. Using ODOT data on highway networks and pavement conditions in tandem 
with FARS data on recorded characteristics of fatality crashes, this study employed 
advanced regression (Poisson and negative binomial) techniques to model fatality 
occurrences across the entire state as well as in sub-regions defined by both ODOT 
(field divisions) and an arbitrary thirteen county test area in northeast Oklahoma. There 
was only modest consistency in the results, with median and outside shoulder design 
consistently proving influential on the likelihood of crashes at given locations. Some 
other variables were also consistently significant but were harder to explain, such as 
surface thickness and surface type, the latter especially challenging because only a few 
pavement surface types dominate the state’s highways. The research also discovered 
that for Oklahoma at least the problems often associated with using Poisson regression 
for analyzing fatality counts, over- and underdispersion, were not so much an issue and 
thus both Poisson and negative binomial regression performed quite similarly. 

However, there were some large operational challenges, mostly related to the nature of 
the raw data. Many variable definitions were not clear (at least to non-engineers) and 
we were not always able to obtain complete explanations of some variables. As a result, 
some measured variables (such as curvature) had to be converted into categories in 
order to conduct some type of analysis that incorporated those traits. Additionally, the 
variable of interest, the locations of fatal crashes, was in point form (latitude and 
longitude in FARS) while all the roadway data were in vector form. This meant that 
many widely-used and understood methods of spatial analysis and regression, such as 
the use of spatial autocorrelation statistics and/or geographically weighted regression, 
were not deemed useful to this research, though literature reviewed earlier 
demonstrates that some analysis of this type has been applied to the analysis of crash 
locations. However, geostatistical analyses are typically employed to identify spatial 
clusters of high crash locations whereas this research sought to understand the physical 
traits at individual crash locations and subsequently model those traits. 

Furthermore, the discrete nature of the dependent variable (both in variable and 
physical space) limited analysis approaches, and the Poisson regression method is the 
most commonly used in the literature but it is not a simple method to employ or 
describe. This report has endeavored to narrate the results in such a way that readers 
familiar with basic regression can still understand the overall results and implications. 
The large number of categorical variables also resulted in the common outcome that an 
overall category of a given highway characteristic might prove significant in the model 
but few if any of the individual category tallies are likewise significant. 
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These various challenges and obstacles were overcome with a lengthy, thorough, and 
iterative process of data evaluation, clean up, (when necessary) categorization, geo-
referencing, integration, and finally analysis. As noted earlier, this process took much 
longer than anticipated due to the diverse nature of the disparate datasets that were 
used in this study despite the assistance of both ODOT personnel and researchers at 
the University of Oklahoma Intelligent Transportation Systems (ITS) lab with whom we 
collaborated on various tasks.  

The ultimate goal of this research is to provide traffic engineers with information about 
what factors influence the occurrence of fatality crashes across the state. The engineers 
can focus on the design and condition characteristics over which the transportation 
agency has authority in order to identify, develop, and apply safety treatments to reduce 
highway fatalities. Beyond Oklahoma, these methods have broad applicability since 
data collection and highway construction methods are relatively consistent across the 
United States. Nonetheless, the diverse agencies that collect these data use different 
formats best suited to their own needs, and integrating the data to permit meaningful 
analysis remains a challenge that is also evident in the literature. There are myriad 
approaches to preparing datasets for this type of analysis, and no single method seems 
dominant and furthermore every year more new approaches emerge [62].  

However, we do not necessarily advocate for standardization of the research, since 
different researchers and agencies have different goals, but it does seem that there is 
far less consistency in this area of investigation than other areas of transportation 
geography. Such diversity is both healthy but also frustrating, as a great deal of time, 
effort, and expertise is necessary to determine the best way to proceed with research in 
a given location and with specific datasets available. 

In response to the great breadth of techniques and approaches available, this report 
reviewed in an extensive, but by no means exhaustive, fashion the primary literature on 
accident analysis techniques. Like most basic, academic research in the social 
sciences, this project does not analyze or recommend specific accident prevention 
construction techniques; such research lies in the realm of civil and mechanical 
engineers, and ODOT. Instead, we proposed and were tasked with identifying 
characteristics of the state’s highways the correlate with fatality crash locations and to 
report our findings. Oklahoma and the United States have both made significant strides 
in reducing crashes, fatalities, and other negative outcomes of travel on the state’s 
roadways, and this research will hopefully contribute further to this trend.  
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